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ABSTRACT 

During the 16 days’ GPS jamming attack from North Korea in 2012, it was reported that 1,016 airplanes and 254 ships in 

South Korea could not receive GPS signals.  As a complementary positioning, navigation and timing system to GPS, the 

South Korean government recently decided to deploy an eLoran system which is a high-power terrestrial radionavigation 

system.  As an effort toward eLoran in Korea, initial performance simulation results of the future Korean eLoran system are 

presented in this paper.  The eLoran performance simulation tool of this paper is able to accommodate environment 

variables of Korea and visualize expected navigation accuracy of the eLoran system given arbitrary transmitter locations and 

transmission powers. In addition to the simulation results, the current status and future plans for deploying eLoran in Korea 



are also presented. 

 

I. INTRODUCTION 

 

eLoran is a ground-based high power navigation system that uses low frequency (100 Hz) radio waves. In contrast to the 

satellite-based navigation systems such as Global Positioning System (GPS) of the United States, eLoran is robust to signal 

jamming because of its very high transmission power. GPS is used in diverse fields and now it is deeply entrenched in our 

daily lives. However, the more the society relies on GPS, the higher the risk of the service interruption due to unintentional 

interference or intentional jamming. Carroll [1] mentioned the vulnerability of GPS and Narins et al. [2] insisted the necessity 

of a robust alternative position, navigation, and timing system. 

In South Korea, there was a series of actual jamming attacks from North Korea. During August 23-26 in 2010, jamming 

signals were broadcast from Gaesong area, which is about 8 km north from the Military Demarcation Line (MDL) between 

South Korea and North Korea. According to the Central Radio Management Office of South Korea, this jamming attack 

affected 181 cell towers, 15 planes, and 1 battle ship in South Korea. One year later, another jamming attack occurred for 11 

days. At that time, 145 cell towers, 106 airplanes and 10 ships in South Korea had difficulty in receiving GPS signals. In 

2012, jamming attacks continued for 16 days and 1,016 airplanes and 254 ships were affected. After experiencing these 

jamming attacks, South Korea has decided to deploy an eLoran system as a complementary Position, Navigation, and Timing 

(PNT) system to GPS [3]. 

In this paper, the Korean eLoran program is briefly introduced in Section II. After presenting the performance simulation tool 

for Korea in Section III, example eLoran accuracy plots over Korea are generated by the simulation tool in Section IV. 

Conclusions are given in Section V. 

  

II. CURRENT LORAN-C INFRASTRUCTURE AND FUTURE ELORAN SYSTEM IN KOREA 

 

Korea is in the coverage of the Korea Loran-C chain with GRI 9930, which contains five stations in the northeast Asia as 

shown in Figure 1. Two stations are in Pohang and Gwangju, Korea, other two stations are in Nijima and Gesashi, Japan, and 

the last one is in Ussuriysk, Russia. The master station is the Pohang station in Korea and the control station is in Daejeon, 

Korea. This Loran-C chain is still operating, but it is not widely utilized due to its relatively low navigation performance 

comparing to Global Navigation Satellite Systems (GNSS) such as GPS. Since Japan plans to discontinue its Loran-C 

operation by the end of 2014, this Korea Loran-C chain may not stably provide the legacy Loran-C service from 2015. 
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This paper presents an eLoran performance simulation tool for Korea, which can estimate the navigation performance such as 

accuracy of the future Korean eLoran system. This simulation tool development is based on the previous study of Lo et al. [5], 

which simulated the eLoran performance over the conterminous United States (CONUS).  

In this section, the process of simulating eLoran accuracy is explained. In order to estimate eLoran accuracy, it is necessary to 

estimate the Signal-to-Noise Ratio (SNR) of received signals. In Section III-A, the received signal strength is calculated with 

the consideration of signal attenuation due to the effective ground conductivity. Then, the atmospheric noise estimation over 

Korea is discussed in Section III-B. Using the estimated received signal strength and atmospheric noise, the SNR is 

calculated in Section III-C. Lastly, the accuracy of the future Korean eLoran system is predicted in Section III-D based on the 

obtained SNR.  

 

A. Received Signal Strength Simulation 

Generally, the amount of signal attenuation is related to the distance that the radio wave travels. Signal strength decreases 

logarithmically when the propagation distance of the signal increases, but the distance is not the only factor that affects the 

signal attenuation. The character of ground along the traveling path of a signal induces additional signal attenuation to the 

signal strength. This effect due to the character of ground is evaluated numerically and represented as an effective ground 

conductivity.  As discussed in [6], the equation showing the relationship between a received signal strength and an 

attenuation factor is, 

PLሺݎሻሾdBሿ = PLሺݎ଴ሻ − 10݊ log ൬ ଴൰ݎݎ + ݁ܽ 

PL(r) is the signal power loss at a distance r, r0 is a reference distance, n is a propagation path loss coefficient, and ea is an 

extra attenuation due to the effective ground conductivity. Thus, the signal attenuation is a function of the effective ground 

conductivity. Figure 3 shows the signal attenuation patterns for different effective ground conductivities. The signal strength 

decreases more rapidly along the terrain with a lower effective conductivity. Since the effective ground conductivity of sea 

water is 4 S/m, which is much higher than the one of land, the attenuation over the sea surface is significantly smaller than 

the one over the land surface. The effective ground conductivity data from the ITU [7] are used to simulate the received 

signal strengths over Korea in this paper. 
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year averaged, -15dB of SNR threshold (b) Repeatable accuracy plot for 95% noise level, worst case of a year, -15dB 

of SNR threshold (c) Repeatable accuracy plot for 99.5% noise level, year averaged, -15dB of SNR threshold (d) 

Repeatable accuracy plot for 95% noise level, year averaged, -12dB of SNR threshold 

 

IV. SIMULATED ELORAN ACCURACY OVER KOREA 

 

As of February 2014, the locations and powers of the transmitters for the Korean eLoran system are not yet confirmed. There 

are several proposals for the transmitting powers. Three example cases are presented in Table 1 and the accuracy plot for 

each case is shown in Figure 6. The first case assumes 1000 kW transmitting powers of the five stations. The second case is a 

set of reasonable powers without noticeable impact on the coverage. The coverage area in Figure 6(b) is not much smaller 

than the case 1 in Figure 6(a). In order to expand the coverage, the case 3 uses additional transmitter in Goseong. The 

expanded area with a 20 m accuracy is shown in Figure 6(c). Again, these accuracy plots in Figure 6 represent ideal accuracy 

when temporal and spatial ASF errors are mitigated by differential eLoran stations and ASF maps respectively. 

 

Table 1 Three sample cases of transmitting powers for the future Korean eLoran system 

 Pohang Gwangju Jeju Ganghwa Ulleung Gosung 

Case 1 1000 1000 1000 1000 1000 - 

Case 2 150 50 250 250 100 - 

Case 3 150 50 250 250 1000 250 
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V. CONCLUSIONS 

 

In this paper, an eLoran performance simulation tool for Korea is presented. The simulation tool can calculate the eLoran 

accuracy based on the SNR estimation, which is the ratio between the received signal strength and the atmospheric noise. 

This tool can simulate the accuracy performance for various conditions such as transmitting powers, locations of transmitters, 

an SNR threshold of a receiver, seasons, noise levels, and so forth. Example accuracy results obtained by this tool were 

presented in this paper. This simulation tool will be further expanded to simulate other navigation performances such as 

integrity, availability, and continuity.  
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